Simulate from Generalized Logistic Item Response Model
sim.raschtype.Rd
This function simulates dichotomous item responses from a
generalized logistic item response model (Stukel, 1988).
The four-parameter logistic item response model
(Loken & Rulison, 2010) is a special case. See rasch.mml2
for more details.
Arguments
- theta
Unidimensional ability vector \(\theta\)
- b
Vector of item difficulties \(b\)
- alpha1
Parameter \(\alpha_1\) in generalized logistic link function
- alpha2
Parameter \(\alpha_2\) in generalized logistic link function
- fixed.a
Vector of item slopes \(a\)
- fixed.c
Vector of lower item asymptotes \(c\)
- fixed.d
Vector of lower item asymptotes \(d\)
Details
The class of generalized logistic link functions contain the most important link functions using the specifications (Stukel, 1988):
logistic link function: \(\alpha_1=0\) and \(\alpha_2=0\)
probit link function: \(\alpha_1=0.165\) and \(\alpha_2=0.165\)
loglog link function: \(\alpha_1=-0.037\) and \(\alpha_2=0.62\)
cloglog link function: \(\alpha_1=0.62\) and \(\alpha_2=-0.037\)
See pgenlogis
for exact transformation formulas of
the mentioned link functions.
References
Loken, E., & Rulison, K. L. (2010). Estimation of a four-parameter item response theory model. British Journal of Mathematical and Statistical Psychology, 63, 509-525.
Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83, 426-431.
Examples
#############################################################################
## EXAMPLE 1: Simulation of data from a Rasch model (alpha_1=alpha_2=0)
#############################################################################
set.seed(9765)
N <- 500 # number of persons
I <- 11 # number of items
b <- seq( -2, 2, length=I )
dat <- sirt::sim.raschtype( stats::rnorm( N ), b )
colnames(dat) <- paste0( "I", 1:I )