Nonparametric Estimation of Item Response Functions
np.dich.Rd
This function does nonparametric item response function estimation (Ramsay, 1991).
Arguments
- dat
An \(N \times I\) data frame of dichotomous item responses
- theta
Estimated theta values, for example weighted likelihood estimates from
wle.rasch
- thetagrid
A vector of theta values where the nonparametric item response functions shall be evaluated.
- progress
Display progress?
- bwscale
The bandwidth parameter \(h\) is calculated by the formula \(h=\)
bwscale
\(\cdot N^{-1/5}\)- method
The default
normal
performs kernel regression with untransformed item responses. The methodbinomial
uses nonparametric logistic regression implemented in the sm library.
Value
A list with following entries
- dat
Original data frame
- thetagrid
Vector of theta values at which the item response functions are evaluated
- theta
Used theta values as person parameter estimates
- estimate
Estimated item response functions
- ...
References
Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611-630.
Examples
#############################################################################
# EXAMPLE 1: Reading dataset
#############################################################################
data( data.read )
dat <- data.read
# estimate Rasch model
mod <- sirt::rasch.mml2( dat )
# WLE estimation
wle1 <- sirt::wle.rasch( dat=dat, b=mod$item$b )$theta
# nonparametric function estimation
np1 <- sirt::np.dich( dat=dat, theta=wle1, thetagrid=seq(-2.5, 2.5, len=100 ) )
print( str(np1))
# plot nonparametric item response curves
plot( np1, b=mod$item$b )