Person Parameter Estimation of the Rasch Copula Model (Braeken, 2011)
person.parameter.rasch.copula.Rd
Ability estimates as maximum likelihood estimates (MLE) are provided by the Rasch copula model.
Usage
person.parameter.rasch.copula(raschcopula.object, numdiff.parm=0.001,
conv.parm=0.001, maxiter=20, stepwidth=1,
print.summary=TRUE, ...)
Arguments
- raschcopula.object
Object which is generated by the
rasch.copula2
function.- numdiff.parm
Parameter \(h\) for numerical differentiation
- conv.parm
Convergence criterion
- maxiter
Maximum number of iterations
- stepwidth
Maximal increment in iterations
- print.summary
Print summary?
- ...
Further arguments to be passed
Value
A list with following entries
- person
Estimated person parameters
- se.inflat
Inflation of individual standard errors due to local dependence
- theta.table
Ability estimates for each unique response pattern
- pattern.in.data
Item response pattern
- summary.theta.table
Summary statistics of person parameter estimates
See also
See rasch.copula2
for estimating Rasch copula models.
Examples
#############################################################################
# EXAMPLE 1: Reading Data
#############################################################################
data(data.read)
dat <- data.read
# define item cluster
itemcluster <- rep( 1:3, each=4 )
mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster )
summary(mod1)
# person parameter estimation under the Rasch copula model
pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 )
## Mean percentage standard error inflation
## missing.pattern Mperc.seinflat
## 1 1 6.35
if (FALSE) {
#############################################################################
# EXAMPLE 2: 12 items nested within 3 item clusters (testlets)
# Cluster 1 -> Items 1-4; Cluster 2 -> Items 6-9; Cluster 3 -> Items 10-12
#############################################################################
set.seed(967)
I <- 12 # number of items
n <- 450 # number of persons
b <- seq(-2,2, len=I) # item difficulties
b <- sample(b) # sample item difficulties
theta <- stats::rnorm( n, sd=1 ) # person abilities
# itemcluster
itemcluster <- rep(0,I)
itemcluster[ 1:4 ] <- 1
itemcluster[ 6:9 ] <- 2
itemcluster[ 10:12 ] <- 3
# residual correlations
rho <- c( .35, .25, .30 )
# simulate data
dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho )
colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="")
# estimate Rasch copula model
mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster )
summary(mod1)
# person parameter estimation under the Rasch copula model
pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 )
## Mean percentage standard error inflation
## missing.pattern Mperc.seinflat
## 1 1 10.48
}