Multidimensional IRT Copula Model
rasch.copula.Rd
This function handles local dependence by specifying copulas for residuals in multidimensional item response models for dichotomous item responses (Braeken, 2011; Braeken, Tuerlinckx & de Boeck, 2007; Schroeders, Robitzsch & Schipolowski, 2014). Estimation is allowed for item difficulties, item slopes and a generalized logistic link function (Stukel, 1988).
The function rasch.copula3
allows the estimation of multidimensional
models while rasch.copula2
only handles unidimensional models.
Usage
rasch.copula2(dat, itemcluster, weights=NULL, copula.type="bound.mixt",
progress=TRUE, mmliter=1000, delta=NULL,
theta.k=seq(-4, 4, len=21), alpha1=0, alpha2=0,
numdiff.parm=1e-06, est.b=seq(1, ncol(dat)),
est.a=rep(1, ncol(dat)), est.delta=NULL, b.init=NULL, a.init=NULL,
est.alpha=FALSE, glob.conv=0.0001, alpha.conv=1e-04, conv1=0.001,
dev.crit=.2, increment.factor=1.01)
rasch.copula3(dat, itemcluster, dims=NULL, copula.type="bound.mixt",
progress=TRUE, mmliter=1000, delta=NULL,
theta.k=seq(-4, 4, len=21), alpha1=0, alpha2=0,
numdiff.parm=1e-06, est.b=seq(1, ncol(dat)),
est.a=rep(1, ncol(dat)), est.delta=NULL, b.init=NULL, a.init=NULL,
est.alpha=FALSE, glob.conv=0.0001, alpha.conv=1e-04, conv1=0.001,
dev.crit=.2, rho.init=.5, increment.factor=1.01)
# S3 method for rasch.copula2
summary(object, file=NULL, digits=3, ...)
# S3 method for rasch.copula3
summary(object, file=NULL, digits=3, ...)
# S3 method for rasch.copula2
anova(object,...)
# S3 method for rasch.copula3
anova(object,...)
# S3 method for rasch.copula2
logLik(object,...)
# S3 method for rasch.copula3
logLik(object,...)
# S3 method for rasch.copula2
IRT.likelihood(object,...)
# S3 method for rasch.copula3
IRT.likelihood(object,...)
# S3 method for rasch.copula2
IRT.posterior(object,...)
# S3 method for rasch.copula3
IRT.posterior(object,...)
Arguments
- dat
An \(N \times I\) data frame. Cases with only missing responses are removed from the analysis.
- itemcluster
An integer vector of length \(I\) (number of items). Items with the same integers define a joint item cluster of (positively) locally dependent items. Values of zero indicate that the corresponding item is not included in any item cluster of dependent responses.
- weights
Optional vector of sampling weights
- dims
A vector indicating to which dimension an item is allocated. The default is that all items load on the first dimension.
- copula.type
A character or a vector containing one of the following copula types:
bound.mixt
(boundary mixture copula),cook.johnson
(Cook-Johnson copula) orfrank
(Frank copula) (see Braeken, 2011). The vectorcopula.type
must match the number of different itemclusters. For every itemcluster, a different copula type may be specified (see Examples).
- progress
Print progress? Default is
TRUE
.- mmliter
Maximum number of iterations.
- delta
An optional vector of starting values for the dependency parameter
delta
.- theta.k
Discretized trait distribution
- alpha1
alpha1
parameter in the generalized logistic item response model (Stukel, 1988). The default is 0 which leads together withalpha2=0
to the logistic link function.- alpha2
alpha2
parameter in the generalized logistic item response model- numdiff.parm
Parameter for numerical differentiation
- est.b
Integer vector of item difficulties to be estimated
- est.a
Integer vector of item discriminations to be estimated
- est.delta
Integer vector of length
length(itemcluster)
. Nonzero integers correspond todelta
parameters which are estimated. Equal integers indicate parameter equality constraints.- b.init
Initial \(b\) parameters
- a.init
Initial \(a\) parameters
- est.alpha
Should both alpha parameters be estimated? Default is
FALSE
.- glob.conv
Convergence criterion for all parameters
- alpha.conv
Maximal change in alpha parameters for convergence
- conv1
Maximal change in item parameters for convergence
- dev.crit
Maximal change in the deviance. Default is
.2
.- rho.init
Initial value for off-diagonal elements in correlation matrix
- increment.factor
A numeric value larger than one which controls the size of increments in iterations. To stabilize convergence, choose values 1.05 or 1.1 in some situations.
- object
Object of class
rasch.copula2
orrasch.copula3
- file
Optional file name for
summary
output- digits
Number of digits after decimal in
summary
output- ...
Further arguments to be passed
Value
A list with following entries
- N.itemclusters
Number of item clusters
- item
Estimated item parameters
- iter
Number of iterations
- dev
Deviance
- delta
Estimated dependency parameters \(\delta\)
- b
Estimated item difficulties
- a
Estimated item slopes
- mu
Mean
- sigma
Standard deviation
- alpha1
Parameter \(\alpha_1\) in the generalized item response model
- alpha2
Parameter \(\alpha_2\) in the generalized item response model
- ic
Information criteria
- theta.k
Discretized ability distribution
- pi.k
Fixed \(\theta\) distribution
- deviance
Deviance
- pattern
Item response patterns with frequencies and posterior distribution
- person
Data frame with person parameters
- datalist
List of generated data frames during estimation
- EAP.rel
Reliability of the EAP
- copula.type
Type of copula
- summary.delta
Summary for estimated \(\delta\) parameters
- f.qk.yi
Individual posterior
- f.yi.qk
Individual likelihood
- ...
Further values
References
Braeken, J. (2011). A boundary mixture approach to violations of conditional independence. Psychometrika, 76(1), 57-76. doi:10.1007/s11336-010-9190-4
Braeken, J., Kuppens, P., De Boeck, P., & Tuerlinckx, F. (2013). Contextualized personality questionnaires: A case for copulas in structural equation models for categorical data. Multivariate Behavioral Research, 48(6), 845-870. doi:10.1080/00273171.2013.827965
Braeken, J., & Tuerlinckx, F. (2009). Investigating latent constructs with item response models: A MATLAB IRTm toolbox. Behavior Research Methods, 41(4), 1127-1137.
Braeken, J., Tuerlinckx, F., & De Boeck, P. (2007). Copula functions for residual dependency. Psychometrika, 72(3), 393-411. doi:10.1007/s11336-007-9005-4
Schroeders, U., Robitzsch, A., & Schipolowski, S. (2014). A comparison of different psychometric approaches to modeling testlet structures: An example with C-tests. Journal of Educational Measurement, 51(4), 400-418. doi:10.1111/jedm.12054
Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83(402), 426-431. doi:10.1080/01621459.1988.10478613
See also
For a summary see summary.rasch.copula2
.
For simulating locally dependent item responses see sim.rasch.dep
.
Person parameters estimates are obtained by person.parameter.rasch.copula
.
See rasch.mml2
for the generalized logistic link function.
See also Braeken and Tuerlinckx (2009) for alternative (and more expanded) copula models implemented in the MATLAB software. See https://ppw.kuleuven.be/okp/software/irtm/.
See Braeken, Kuppens, De Boeck and Tuerlinckx (2013) for an extension of the copula modeling approach to polytomous data.