Multidimensional IRT Copula Model
rasch.copula.RdThis function handles local dependence by specifying copulas for residuals in multidimensional item response models for dichotomous item responses (Braeken, 2011; Braeken, Tuerlinckx & de Boeck, 2007; Schroeders, Robitzsch & Schipolowski, 2014). Estimation is allowed for item difficulties, item slopes and a generalized logistic link function (Stukel, 1988).
The function rasch.copula3 allows the estimation of multidimensional
models while rasch.copula2 only handles unidimensional models.
Usage
rasch.copula2(dat, itemcluster, weights=NULL, copula.type="bound.mixt",
progress=TRUE, mmliter=1000, delta=NULL,
theta.k=seq(-4, 4, len=21), alpha1=0, alpha2=0,
numdiff.parm=1e-06, est.b=seq(1, ncol(dat)),
est.a=rep(1, ncol(dat)), est.delta=NULL, b.init=NULL, a.init=NULL,
est.alpha=FALSE, glob.conv=0.0001, alpha.conv=1e-04, conv1=0.001,
dev.crit=.2, increment.factor=1.01)
rasch.copula3(dat, itemcluster, dims=NULL, copula.type="bound.mixt",
progress=TRUE, mmliter=1000, delta=NULL,
theta.k=seq(-4, 4, len=21), alpha1=0, alpha2=0,
numdiff.parm=1e-06, est.b=seq(1, ncol(dat)),
est.a=rep(1, ncol(dat)), est.delta=NULL, b.init=NULL, a.init=NULL,
est.alpha=FALSE, glob.conv=0.0001, alpha.conv=1e-04, conv1=0.001,
dev.crit=.2, rho.init=.5, increment.factor=1.01)
# S3 method for rasch.copula2
summary(object, file=NULL, digits=3, ...)
# S3 method for rasch.copula3
summary(object, file=NULL, digits=3, ...)
# S3 method for rasch.copula2
anova(object,...)
# S3 method for rasch.copula3
anova(object,...)
# S3 method for rasch.copula2
logLik(object,...)
# S3 method for rasch.copula3
logLik(object,...)
# S3 method for rasch.copula2
IRT.likelihood(object,...)
# S3 method for rasch.copula3
IRT.likelihood(object,...)
# S3 method for rasch.copula2
IRT.posterior(object,...)
# S3 method for rasch.copula3
IRT.posterior(object,...)Arguments
- dat
An \(N \times I\) data frame. Cases with only missing responses are removed from the analysis.
- itemcluster
An integer vector of length \(I\) (number of items). Items with the same integers define a joint item cluster of (positively) locally dependent items. Values of zero indicate that the corresponding item is not included in any item cluster of dependent responses.
- weights
Optional vector of sampling weights
- dims
A vector indicating to which dimension an item is allocated. The default is that all items load on the first dimension.
- copula.type
A character or a vector containing one of the following copula types:
bound.mixt(boundary mixture copula),cook.johnson(Cook-Johnson copula) orfrank(Frank copula) (see Braeken, 2011). The vectorcopula.typemust match the number of different itemclusters. For every itemcluster, a different copula type may be specified (see Examples).
- progress
Print progress? Default is
TRUE.- mmliter
Maximum number of iterations.
- delta
An optional vector of starting values for the dependency parameter
delta.- theta.k
Discretized trait distribution
- alpha1
alpha1parameter in the generalized logistic item response model (Stukel, 1988). The default is 0 which leads together withalpha2=0to the logistic link function.- alpha2
alpha2parameter in the generalized logistic item response model- numdiff.parm
Parameter for numerical differentiation
- est.b
Integer vector of item difficulties to be estimated
- est.a
Integer vector of item discriminations to be estimated
- est.delta
Integer vector of length
length(itemcluster). Nonzero integers correspond todeltaparameters which are estimated. Equal integers indicate parameter equality constraints.- b.init
Initial \(b\) parameters
- a.init
Initial \(a\) parameters
- est.alpha
Should both alpha parameters be estimated? Default is
FALSE.- glob.conv
Convergence criterion for all parameters
- alpha.conv
Maximal change in alpha parameters for convergence
- conv1
Maximal change in item parameters for convergence
- dev.crit
Maximal change in the deviance. Default is
.2.- rho.init
Initial value for off-diagonal elements in correlation matrix
- increment.factor
A numeric value larger than one which controls the size of increments in iterations. To stabilize convergence, choose values 1.05 or 1.1 in some situations.
- object
Object of class
rasch.copula2orrasch.copula3- file
Optional file name for
summaryoutput- digits
Number of digits after decimal in
summaryoutput- ...
Further arguments to be passed
Value
A list with following entries
- N.itemclusters
Number of item clusters
- item
Estimated item parameters
- iter
Number of iterations
- dev
Deviance
- delta
Estimated dependency parameters \(\delta\)
- b
Estimated item difficulties
- a
Estimated item slopes
- mu
Mean
- sigma
Standard deviation
- alpha1
Parameter \(\alpha_1\) in the generalized item response model
- alpha2
Parameter \(\alpha_2\) in the generalized item response model
- ic
Information criteria
- theta.k
Discretized ability distribution
- pi.k
Fixed \(\theta\) distribution
- deviance
Deviance
- pattern
Item response patterns with frequencies and posterior distribution
- person
Data frame with person parameters
- datalist
List of generated data frames during estimation
- EAP.rel
Reliability of the EAP
- copula.type
Type of copula
- summary.delta
Summary for estimated \(\delta\) parameters
- f.qk.yi
Individual posterior
- f.yi.qk
Individual likelihood
- ...
Further values
References
Braeken, J. (2011). A boundary mixture approach to violations of conditional independence. Psychometrika, 76(1), 57-76. doi:10.1007/s11336-010-9190-4
Braeken, J., Kuppens, P., De Boeck, P., & Tuerlinckx, F. (2013). Contextualized personality questionnaires: A case for copulas in structural equation models for categorical data. Multivariate Behavioral Research, 48(6), 845-870. doi:10.1080/00273171.2013.827965
Braeken, J., & Tuerlinckx, F. (2009). Investigating latent constructs with item response models: A MATLAB IRTm toolbox. Behavior Research Methods, 41(4), 1127-1137.
Braeken, J., Tuerlinckx, F., & De Boeck, P. (2007). Copula functions for residual dependency. Psychometrika, 72(3), 393-411. doi:10.1007/s11336-007-9005-4
Schroeders, U., Robitzsch, A., & Schipolowski, S. (2014). A comparison of different psychometric approaches to modeling testlet structures: An example with C-tests. Journal of Educational Measurement, 51(4), 400-418. doi:10.1111/jedm.12054
Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83(402), 426-431. doi:10.1080/01621459.1988.10478613
See also
For a summary see summary.rasch.copula2.
For simulating locally dependent item responses see sim.rasch.dep.
Person parameters estimates are obtained by person.parameter.rasch.copula.
See rasch.mml2 for the generalized logistic link function.
See also Braeken and Tuerlinckx (2009) for alternative (and more expanded) copula models implemented in the MATLAB software. See https://ppw.kuleuven.be/okp/software/irtm/.
See Braeken, Kuppens, De Boeck and Tuerlinckx (2013) for an extension of the copula modeling approach to polytomous data.