Person Fit Statistics for the Rasch Model
personfit.stat.Rd
This function collects some person fit statistics for the Rasch model (Karabatsos, 2003; Meijer & Sijtsma, 2001).
Arguments
- dat
An \(N \times I\) data frame of dichotomous item responses
- abil
An ability estimate, e.g. the WLE
- b
Estimated item difficulty
Value
A data frame with following columns (see Meijer & Sijtsma 2001 for a review of different person fit statistics):
- case
Case index
- abil
Ability estimate
abil
- mean
Person mean of correctly solved items
- caution
Caution index
- depend
Dependability index
- ECI1
\(ECI1\)
- ECI2
\(ECI2\)
- ECI3
\(ECI3\)
- ECI4
\(ECI4\)
- ECI5
\(ECI5\)
- ECI6
\(ECI6\)
- l0
Fit statistic \(l_0\)
- lz
Fit statistic \(l_z\)
- outfit
Person outfit statistic
- infit
Person infit statistic
- rpbis
Point biserial correlation of item responses and item \(p\) values
- rpbis.itemdiff
Point biserial correlation of item responses and item difficulties
b
- U3
Fit statistic \(U_3\)
References
Karabatsos, G. (2003). Comparing the aberrant response detection performance of thirty-six person-fit statistics. Applied Measurement in Education, 16, 277-298.
Meijer, R. R., & Sijtsma, K. (2001). Methodology review: Evaluating person fit. Applied Psychological Measurement, 25, 107-135.
See also
See pcm.fit
for person fit in the partial credit model.
See the irtProb and PerFit packages for person fit statistics
and person response curves and functions included in other packages:
mirt::personfit
,
eRm::personfit
and
ltm::person.fit
.
Examples
#############################################################################
# EXAMPLE 1: Person fit Reading Data
#############################################################################
data(data.read)
dat <- data.read
# estimate Rasch model
mod <- sirt::rasch.mml2( dat )
# WLE
wle1 <- sirt::wle.rasch( dat,b=mod$item$b )$theta
b <- mod$item$b # item difficulty
# evaluate person fit
pf1 <- sirt::personfit.stat( dat=dat, abil=wle1, b=b)
if (FALSE) {
# dimensional analysis of person fit statistics
x0 <- stats::na.omit(pf1[, -c(1:3) ] )
stats::factanal( x=x0, factors=2, rotation="promax" )
## Loadings:
## Factor1 Factor2
## caution 0.914
## depend 0.293 0.750
## ECI1 0.869 0.160
## ECI2 0.869 0.162
## ECI3 1.011
## ECI4 1.159 -0.269
## ECI5 1.012
## ECI6 0.879 0.130
## l0 0.409 -1.255
## lz -0.504 -0.529
## outfit 0.297 0.702
## infit 0.362 0.695
## rpbis -1.014
## rpbis.itemdiff 1.032
## U3 0.735 0.309
##
## Factor Correlations:
## Factor1 Factor2
## Factor1 1.000 -0.727
## Factor2 -0.727 1.000
##
}