Estimation of the Rasch Model with Variational Approximation
rasch.va.Rd
This function estimates the Rasch model by the estimation method of variational approximation (Rijmen & Vomlel, 2008).
Arguments
- dat
Data frame with dichotomous item responses
- globconv
Convergence criterion for item parameters
- maxiter
Maximal number of iterations
Value
A list with following entries:
- sig
Standard deviation of the trait
- item
Data frame with item parameters
- xsi.ij
Data frame with variational parameters \(\xi_{ij}\)
- mu.i
Vector with individual means \(\mu_i\)
- sigma2.i
Vector with individual variances \(\sigma_i^2\)
References
Rijmen, F., & Vomlel, J. (2008). Assessing the performance of variational methods for mixed logistic regression models. Journal of Statistical Computation and Simulation, 78, 765-779.
Examples
#############################################################################
# EXAMPLE 1: Rasch model
#############################################################################
set.seed(8706)
N <- 5000
I <- 20
dat <- sirt::sim.raschtype( stats::rnorm(N,sd=1.3), b=seq(-2,2,len=I) )
# estimation via variational approximation
mod1 <- sirt::rasch.va(dat)
# estimation via marginal maximum likelihood
mod2 <- sirt::rasch.mml2(dat)
# estmation via joint maximum likelihood
mod3 <- sirt::rasch.jml(dat)
# compare sigma
round( c( mod1$sig, mod2$sd.trait ), 3 )
## [1] 1.222 1.314
# compare b
round( cbind( mod1$item$b, mod2$item$b, mod3$item$itemdiff), 3 )
## [,1] [,2] [,3]
## [1,] -1.898 -1.967 -2.090
## [2,] -1.776 -1.841 -1.954
## [3,] -1.561 -1.618 -1.715
## [4,] -1.326 -1.375 -1.455
## [5,] -1.121 -1.163 -1.228