Simulate from Ramsay's Quotient Model
sim.qm.ramsay.Rd
This function simulates dichotomous item response data according to Ramsay's quotient model (Ramsay, 1989).
Arguments
- theta
Vector of of length \(N\) person parameters (must be positive!)
- b
Vector of length \(I\) of item difficulties (must be positive)
- K
Vector of length \(I\) of guessing parameters (must be positive)
Details
Ramsay's quotient model (Ramsay, 1989) is defined by the equation $$P(X_{pi}=1 | \theta_p )=\frac{ \exp { ( \theta_p / b_i ) } } { K_i + \exp { ( \theta_p / b_i ) } }$$
References
Ramsay, J. O. (1989). A comparison of three simple test theory models. Psychometrika, 54, 487-499.
van der Maas, H. J. L., Molenaar, D., Maris, G., Kievit, R. A., & Borsboom, D. (2011). Cognitive psychology meets psychometric theory: On the relation between process models for decision making and latent variable models for individual differences. Psychological Review, 318, 339-356.
See also
See rasch.mml2
for estimating Ramsay's quotient model.
See sim.raschtype
for simulating response data from
the generalized logistic item response model.
Examples
#############################################################################
# EXAMPLE 1: Estimate Ramsay Quotient Model with rasch.mml2
#############################################################################
set.seed(657)
# simulate data according to the Ramsay model
N <- 1000 # persons
I <- 11 # items
theta <- exp( stats::rnorm( N ) ) # person ability
b <- exp( seq(-2,2,len=I)) # item difficulty
K <- rep( 3, I ) # K parameter (=> guessing)
# apply simulation function
dat <- sirt::sim.qm.ramsay( theta, b, K )
#***
# analysis
mmliter <- 50 # maximum number of iterations
I <- ncol(dat)
fixed.K <- rep( 3, I )
# Ramsay QM with fixed K parameter (K=3 in fixed.K specification)
mod1 <- sirt::rasch.mml2( dat, mmliter=mmliter, irtmodel="ramsay.qm",
fixed.K=fixed.K )
summary(mod1)
# Ramsay QM with joint estimated K parameters
mod2 <- sirt::rasch.mml2( dat, mmliter=mmliter, irtmodel="ramsay.qm",
est.K=rep(1,I) )
summary(mod2)
if (FALSE) {
# Ramsay QM with itemwise estimated K parameters
mod3 <- sirt::rasch.mml2( dat, mmliter=mmliter, irtmodel="ramsay.qm",
est.K=1:I )
summary(mod3)
# Rasch model
mod4 <- sirt::rasch.mml2( dat )
summary(mod4)
# generalized logistic model
mod5 <- sirt::rasch.mml2( dat, est.alpha=TRUE, mmliter=mmliter)
summary(mod5)
# 2PL model
mod6 <- sirt::rasch.mml2( dat, est.a=rep(1,I) )
summary(mod6)
# Difficulty + Guessing (b+c) Model
mod7 <- sirt::rasch.mml2( dat, est.c=rep(1,I) )
summary(mod7)
# estimate separate guessing (c) parameters
mod8 <- sirt::rasch.mml2( dat, est.c=1:I )
summary(mod8)
#*** estimate Model 1 with user defined function in mirt package
# create user defined function for Ramsay's quotient model
name <- 'ramsayqm'
par <- c("K"=3, "b"=1 )
est <- c(TRUE, TRUE)
P.ramsay <- function(par,Theta){
eps <- .01
K <- par[1]
b <- par[2]
num <- exp( exp( Theta[,1] ) / b )
denom <- K + num
P1 <- num / denom
P1 <- eps + ( 1 - 2*eps ) * P1
cbind(1-P1, P1)
}
# create item response function
ramsayqm <- mirt::createItem(name, par=par, est=est, P=P.ramsay)
# define parameters to be estimated
mod1m.pars <- mirt::mirt(dat, 1, rep( "ramsayqm",I),
customItems=list("ramsayqm"=ramsayqm), pars="values")
mod1m.pars[ mod1m.pars$name=="K", "est" ] <- FALSE
# define Theta design matrix
Theta <- matrix( seq(-3,3,len=10), ncol=1)
# estimate model
mod1m <- mirt::mirt(dat, 1, rep( "ramsayqm",I), customItems=list("ramsayqm"=ramsayqm),
pars=mod1m.pars, verbose=TRUE,
technical=list( customTheta=Theta, NCYCLES=50)
)
print(mod1m)
summary(mod1m)
cmod1m <- sirt::mirt.wrapper.coef( mod1m )$coef
# compare simulated and estimated values
dfr <- cbind( b, cmod1m$b, exp(mod1$item$b ) )
colnames(dfr) <- c("simulated", "mirt", "sirt_rasch.mml2")
round( dfr, 2 )
## simulated mirt sirt_rasch.mml2
## [1,] 0.14 0.11 0.11
## [2,] 0.20 0.17 0.18
## [3,] 0.30 0.27 0.29
## [4,] 0.45 0.42 0.43
## [5,] 0.67 0.65 0.67
## [6,] 1.00 1.00 1.01
## [7,] 1.49 1.53 1.54
## [8,] 2.23 2.21 2.21
## [9,] 3.32 3.00 2.98
##[10,] 4.95 5.22 5.09
##[11,] 7.39 5.62 5.51
}